CSPE

High Availability Infrastructures for SMBs

Presented by Alain Casault, Eng. MTCNA, MTCRE, MTCWE 2015 Canadian MUM Montréal October 19th 2015

About the trainer

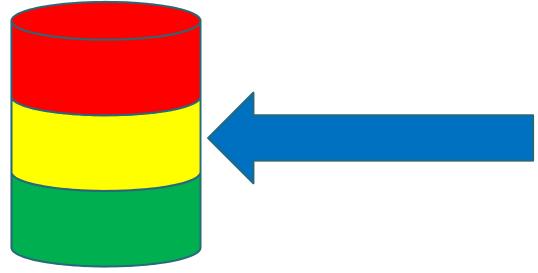
- Electrical Engineering
- Over 20 years of experience with networking and server OS's
- Has experience with many types of clients
- Author of Mikrotik's current **MTCNA** course material
- CSPE (Centre de Services Professionnels en Éducation)
 - Educational services
 - My part: MikroTik and Telecommunications training
 - Introduction to the TCP/IP Protocol
 - Introduction to MikroTik Routers

Objectives

We will learn about:

- High availability
- How to configure MikroTik equipment to build robust and flexible networks

Presentation overview


- Introduction
 - Concepts of "HA"
 - Causes of downtime
 - Topology: The anatomy of redundancy
- The technologies involved in "HA"
- Demo

Presentation complexity

Advanced

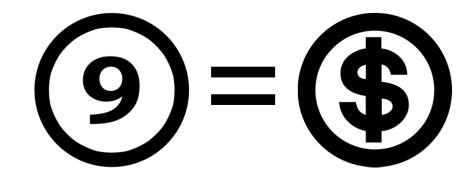
Intermediate

Introduction

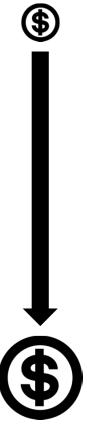
Centre de services professionnels en éducation

INTRODUCTION

© Alain Casault (v1)


Wikipedia defines "High Availability" as

"... a characteristic of a system, which describes the duration (length of time) for which the system is operational."


I define "High Availability" as

"Up time" "I-keep-my-job time" "Happy-boss time"

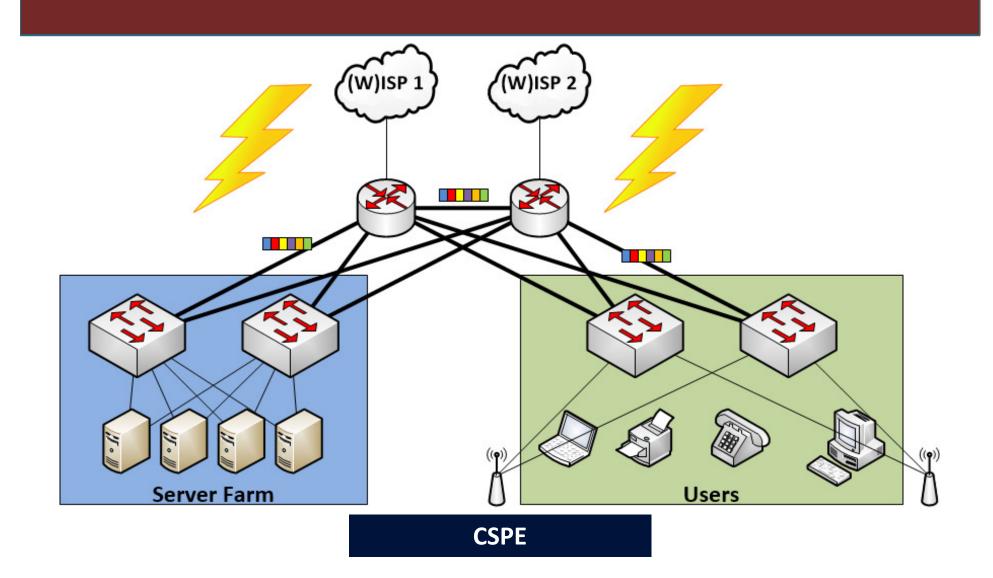
- "High Availability" is referred to as a percentage score
- We often hear "nines" of availability

• What do the "nines" mean?

Availability %	Nines	Downtime / year	Downtime / month	Downtime / week
90%	1	36.5 days	72 hours	16.8 hours
95%		18.25 days	36 hours	8.4 hours
97%		10.96 days	21.6 hours	5.04 hours
98%		7.30 days	14.4 hours	3.36 hours
99%	2	3.65 days	7.20 hours	1.68 hours
99.5%		1.83 days	3.60 hours	50.4 Min
99.8%		17.52 hours	86.23 Min	20.16 Min
99.9%	3	8.76 hours	43.8 Min	10.1 Min
99.95%		4.38 hours	21.56 Min	5.04 Min
99.99%	4	52.56 Min	4.38 Min	1.01 Min
99.995%		26.28 Min	2.16 Min	30.24 Sec
99.999%	5	5.26 Min	25.9 Sec	6.05 Sec
99.9999%	6	31.5 Sec	2.59 Sec	604.8 mSec
99.99999%	7	3.15 Sec	262.97 mSec	60.48 mSec
99.999999%	8	315.569 mSec	26.297 mSec	6.048 mSec
99.9999999%	9	31.5569 mSec	2.6297 mSec	0.6048 mSec

© Alain Casault (v1)

- For a more realistic "up time" score:
 - Negotiate scheduled downtime
 - Not counted in the "High Availability" score


Causes of downtime

- Some causes are:
 - Hardware failure
 - Network failure
 - Human error
 - -System overload
 - Electrical supply

Topology

• What would a great "High Availability" scenario look like?

Topology

Topology

- How do we get there?
 - Duplicate hardware
 - Duplicate links
 - Duplicate electrical supplies
 - Circuits (120V/240V)
 - Power supplies (in routers)
 - Proper configuration
 - VLANs
 - VRRP
 - Various (optimization)

Centre de services professionnels en éducation

TECHNOLOGIES

© Alain Casault (v1)

Legal Disclaimer

What I present in the coming slides is one approach. There are other ways to implement the discussed topics.

Centre de services professionnels en éducation

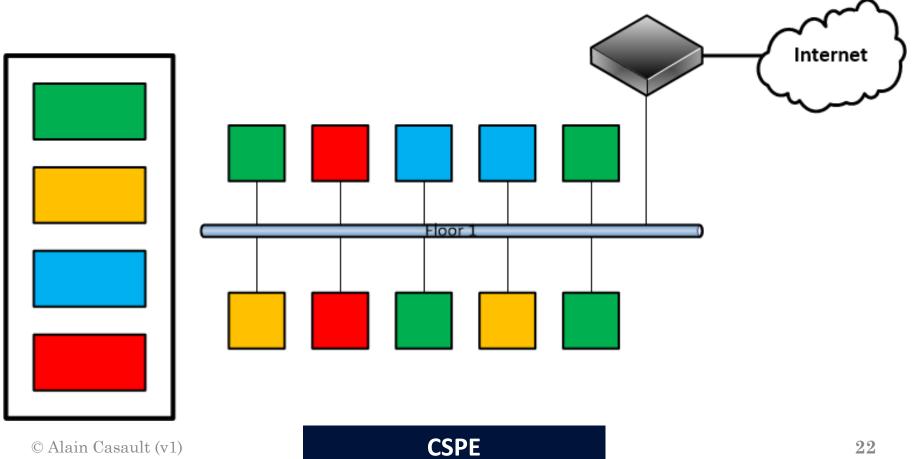
FLEXIBILITY

© Alain Casault (v1)

Definition

Merriam Webster defines "Flexibility" as

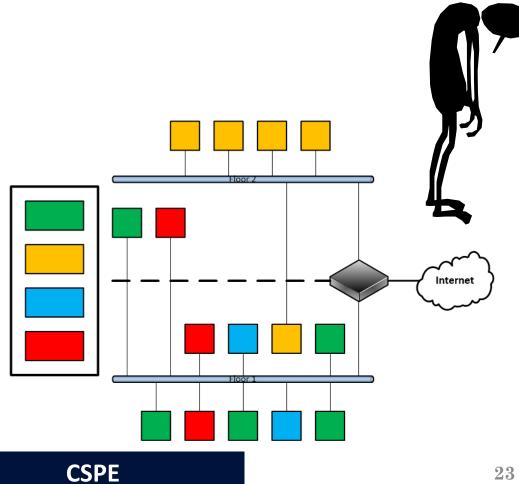
"Characterized by a ready capability to adapt to new, different, or changing requirements"


http://www.merriam-webster.com/dictionary/flexibility

© Alain Casault (v1)

Why design flexible networks?

- Adapt quickly to organizational growth, demands and changes
- Minimize costs associated to those changes


1st design (*newbie*)

 $\mathbf{22}$

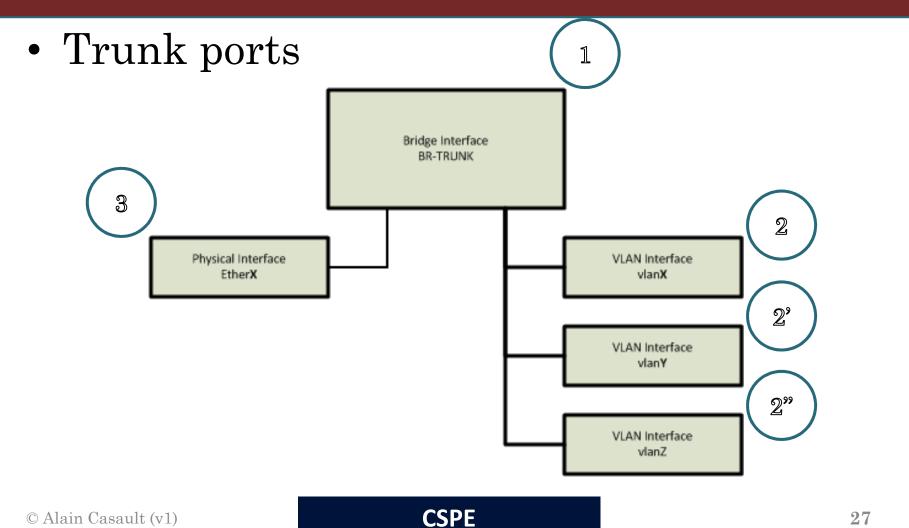
Design confronts reality

- Move Orange group to 2nd floor
- 1 Red and 1 Green on 2nd floor but connected to their LAN (1st floor)
- 1 Orange on 1^{st} floor but connected to his LAN (2^{nd} floor)
- Isolate Red group that plays Halo (*and slows down the network*)

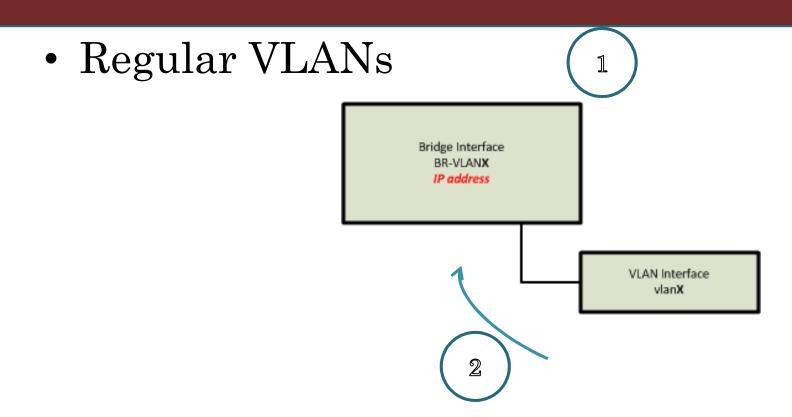

What to do?

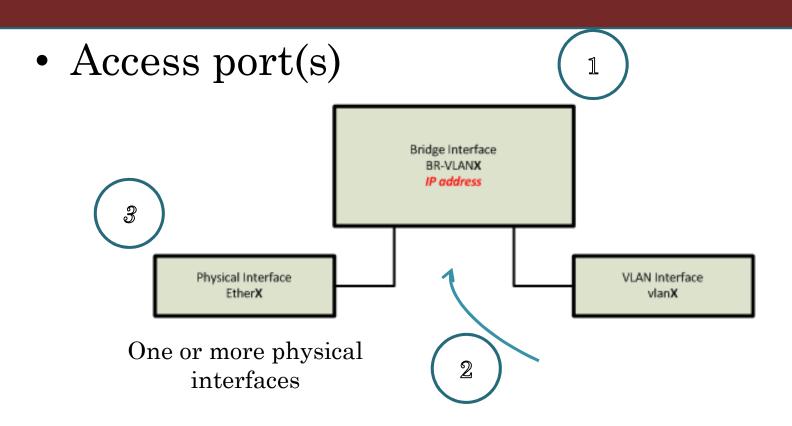
• VLANs

What are VLANs?


• Layer 2 technology used to partition networks into separate "virtual" broadcast domains

2^{nd} design




How to visualise VLAN configs

How to visualise VLAN configs

How to visualise VLAN configs

VLANs

• How to do it

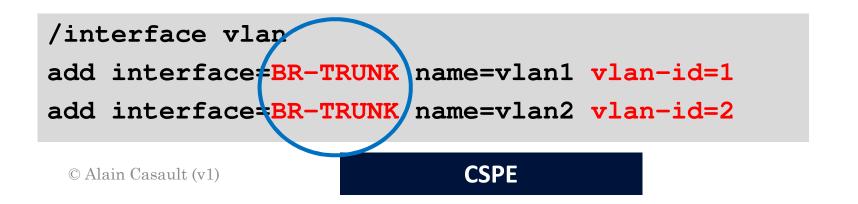
Creating VLANs (step by step)

• Bridge interfaces

– 1 to host all VLANsand

-1 per VLAN

/interface bridge


add name=BR-TRUNK

add name=BR-VLAN1

add name=BR-VLAN2

Creating VLANs (step by step)

- VLAN interfaces
 - -1 per VLAN

Creating VLANs (step by step)

Bind interfaces

- Trunk ports
 - 1 or more physical interfaces (ex. $\rightarrow BR$ -TRUNK)
- VLANs and access ports
 - − 1 VLAN interface (*ex.* \rightarrow *BR-VLANX*) (*must*)
 - − 1 or more physical interfaces (ex. → BR-VLANX) (for access ports if present)

```
/interface bridge port
add bridge=BR-TRUNK interface=ether5
add bridge=BR-VLAN1 interface=vlan1
add bridge=BR-VLAN1 interface=ether1
```

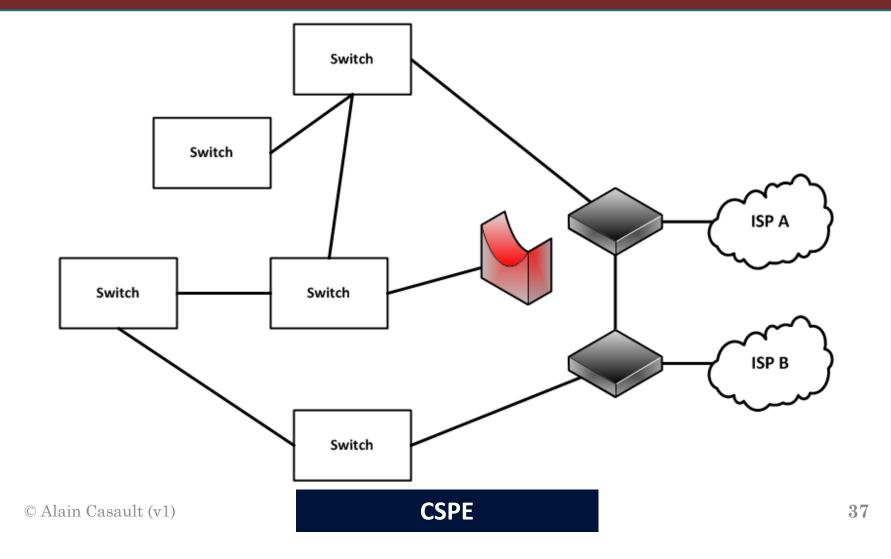
Finishing touches

- Create:
 - IP addresses on VLANs
 - BR-VLANx
 - <u>Trunk bridge does not get IP address</u>
 - DHCP server on VLANs
 - BR-VLANx
 - Trunk bridge does not get DHCP server
 - Others parameters
 - DNS, (S)NTP, Identity, etc.

Optimization

• Bridge STP Priorities

- Cores have higher priority
 - Master has higher (*ex. 1000 hex*)
 - Backup has lower (*ex. 1001 hex*)
- Others routers keep default (*8000 hex*)


Interface <br-vlan1></br-vlan1>			
General STP Statu	is Traffic		OK
Protocol Mode:	Cancel		
Priority:	1000	hex	Apply
Max Message Age:	00:00:10		Disable
Forward Delay:	00:00:15		Comment
Transmit Hold Count:	6		Сору
Ageing Time:	00:05:00		Remove
			Torch
enabled	running	slave	

Optimization

• Why change STP priority?

- Anecdote: *The forgotten bridge!!*

Optimization (anecdote)

Optimization

- Bridge ports
 - Edge (Trunk=no, Access=yes)
 - Point-to-point (Full duplex=yes, Half duplex=no)

Bridge		
Bridge Ports Filters	NAT Hosts	
+ - × ×		Find
Interface /	Bridge Priority (h Path Cost Horizon Role	Root Pat
4⊐tether01	Bridge-Telecom 80 10 designated port	
4=tether02	Bridge Port <ether03></ether03>	
d⊐tether03		
1=tether05	General Status OK	
1=tether06		
1⊐tether07	Interface: ether03 Cancel	
1⊈tether08	Bridge: Bridge-PC - Apply	
1⊈tether09		
1=tether10	Priority: 80 hex Disable	
	Path Cost: 10 Comment	
9 items (1 selected)		
	Horizon: Copy	
_	Remove	
	Edge: yes	
	Point To Point: yes	
	External FDB: auto	
	Auto Isolate	
	enabled inactive	

Optimization

- Goals of all these steps:
 - Speed up convergence
 - Be able to predict network behavior and operations

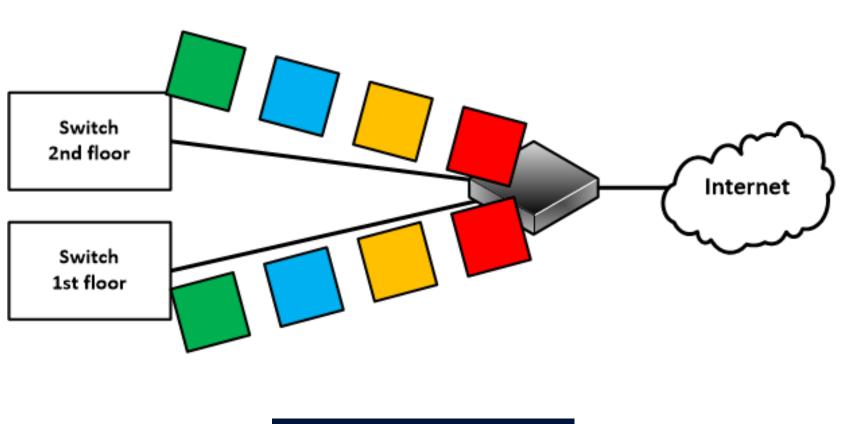
Centre de services professionnels en éducation

REDUNDANCY

© Alain Casault (v1)

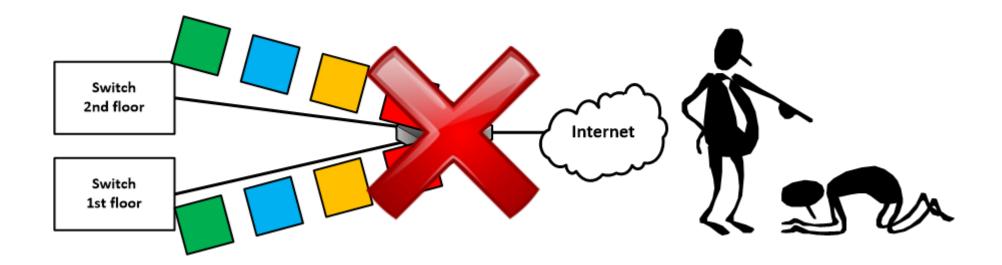
Definition

Merriam Webster defines "**Redundancy**" as

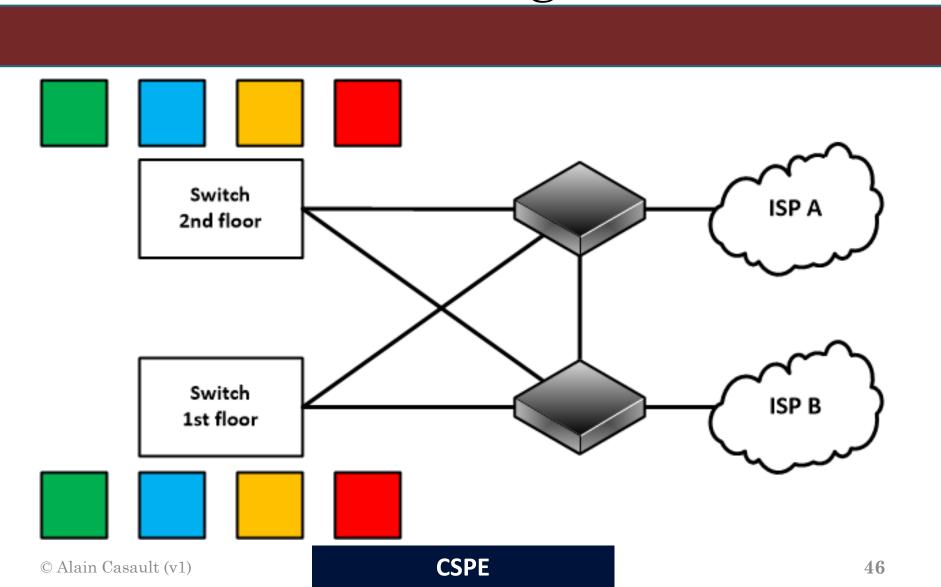

"A part in a machine, system, etc., that has the same function as another part and that exists so that the entire machine, system, etc., will not fail if the main part fails."

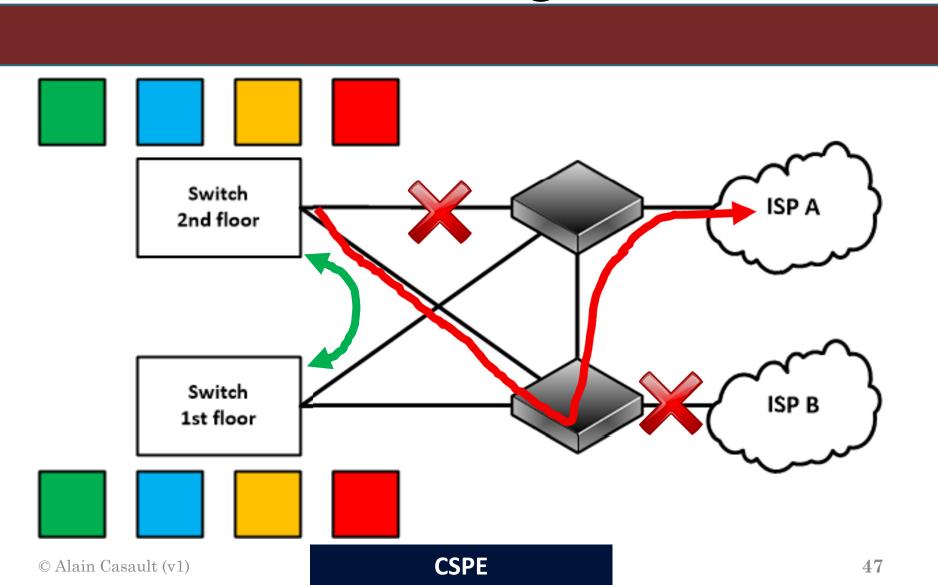
http://www.merriam-webster.com/dictionary/redundancy

Why should we have a redundant network?

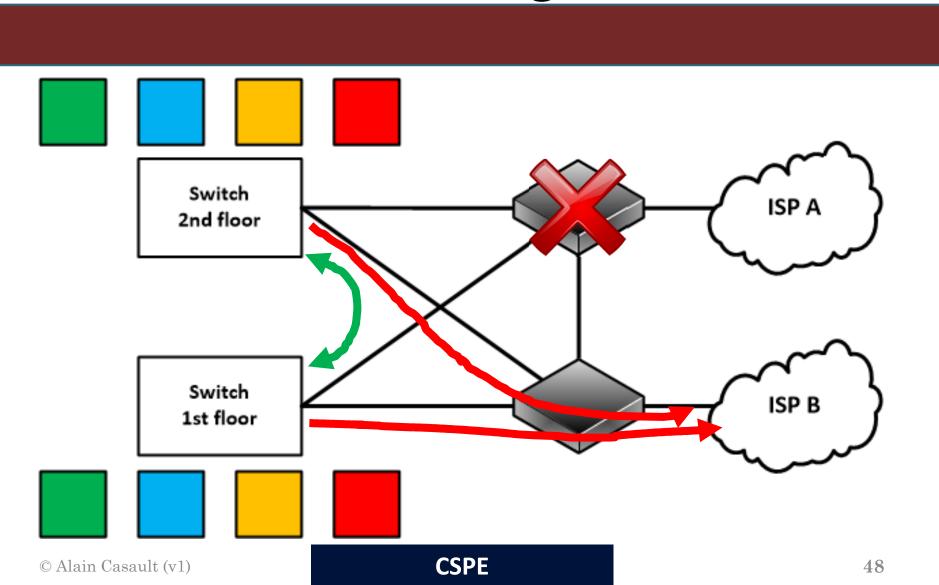

- Avoid downtime
 - Loss of productivity
 - Loss of revenue
- SLAs (*Service Level Agreements*) can carry cash penalties if ISPs fail to meet contractual goals

2^{nd} design


Design confronts reality


What to do?

- Hardware redundancy
- Link redundancy
- VRRP


3rd design

3rd design

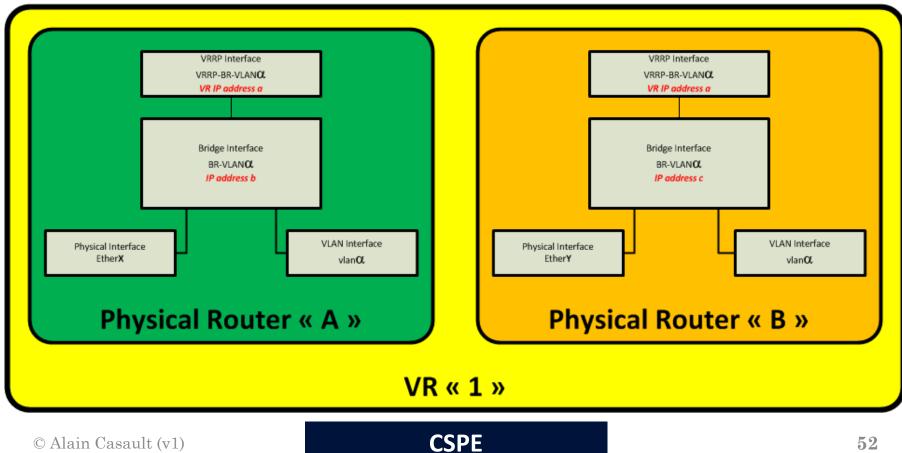
3rd design

Is hardware redundancy enough?

- NO!
 - Answer: VRRP

What is VRRP?

VRRP: virtual router redundancy protocol


- A protocol that assigns responsibility for a virtual router (*VR*) to <u>one</u> physical router inside a group (*two or more routers*)
- Shares the control of a virtual IP address between those members

Why use VRRP?

• Insures the availability of the default gateway as long as one member remains active

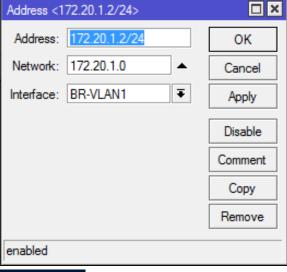
How to visualise VRRP configs

• VLAN α

VRRP

• How to do it

Activating VRRP (step by step)


Interface List Interface List Interface List Interface List Interface CVRRP-Br-VLANI> General VRRP Scripts Traffic Interface CVRRP-BR-VLANI General VRRP Scripts Traffic Interface CVRRP-BR-VLANI Comment VRRP Scripts Traffic Interface CVRRP-BR-VLANI Comment VRRP Scripts Traffic Interface CVRRP-BR-VLANI Comment VRRP Scripts Traffic Interface VRRP Scripts Traffic Interface CVRRP-BR-VLANI Comment VRRP Scripts Traffic Interface Scripts Traffic		or backup?			
<pre>/interface vrrp add interface=BR-VLAN1 name=VRRP-BR-VLAN1 priority=200 add interface=BR-VLAN2 name=VRRP-BR-VLAN2 priority=200 vrid=2</pre>					
	l name=VRRP-BR-VLAN1 preemp 2 name=VRRP-BR-VLAN2 preemp				
© Alain Casault (v1)	CSPE	54			

Activating VRRP (step by step)

Interface List		
Interface Ethemet EoIP Tunnel II	P Tunnel GRE Tu	u
+ - * × 🗆 🍸		
Name 🛆 Type		I
WRRP-BR-VLAN1 VRRF	,	I
New Address		
Address: 172.20.1.1/32	ОК	
Network:	Cancel	
Interface: VRRP-BR-VLAN1 -	Apply	
	Disable	
	Comment	
	Сору	
	Remove	

- Create an IP address for the VRRP interface.
 - Use free address
 - /32 mask
- If required, modify the IP address on the Bridge interface

 Never have identical real & shared IP address

Optimization

- VRRP priorities
 - One core router is master for all VLANs
 - Other core is backup for all VLANs
- Why?
 - If the master core router fails, the backup quickly takes over
 - If the backup core router fails... not much happens

Centre de services professionnels en éducation

VARIOUS

© Alain Casault (v1)

Optimization

- OSPF Interface priority
 - DR=high value (ex. 100)
 - BDR=low value (ex. 50)
 - -Member=0
- Everything must be predictable!
 DR, BDR, members

OSPF <br-vlan1></br-vlan1>		
General Status		ОК
Interface:	BR-VLAN1	Сору
Cost:	10	Remove
Priority:	100	
Authentication:	MD5	
Authentication Key:	MUM2015	
Authentication Key ID:	1	
Network Type:	broadcast	
Instance ID:	0	
	Passive	
	Use BFD	
Retransmit Interval:	5 s	
Transmit Delay:	1 s	
Hello Interval:	10 s	
Router Dead Interval:	30 s	
dynamic passive	e State: designate	ed router

Optimization

- OSPF
 - Lower "hello-interval"
 - Lower "dead-interval"
- Beware of more OSPF traffic!

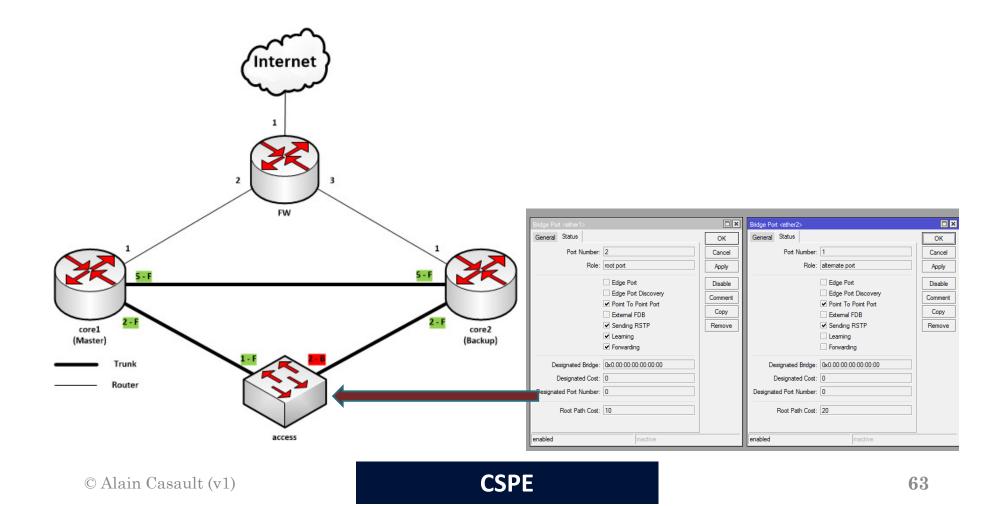
Pitfalls

- Configure one step at a time
 - Configure routers first
 - Plug after, otherwise spanning tree loops!
 - Traffic
 - CPU
 - You

Wish

- MSTP support
 - IEEE 802.1Q-2014, Chap. 13
- Why?
 - True Layer 2 and Layer 3 load-sharing
 - Load-shared VRRP config NOT recommended on two core routers without MSTP
 - In case of loss of a core router, only half affected (for a brief moment)
 - Easier migration from Cisco (PVSTP)

en éducation


DEMONSTRATIONS

© Alain Casault (v1)

62

Setup

Outage of main core

Outage of backup core

© Alain Casault (v1)

Centre de services professionnels en éducation

FINAL WORDS

© Alain Casault (v1)

What have we seen?

- Flexibility using VLANs
- Redundancy by doubling links and hardware and by using VRRP
- Certain things to be aware of

en éducation

QUESTION PERIOD

© Alain Casault (v1)

68

1st MUM in Canada!

Thank you MikroTik!!

